• Tegangan listrik diukur dengan alat ukur yang bernama Volt meter (Vm), jika tegangan listrik diukur dan tidak ada rangkaian luar lainnya, maka akan kita dapatkan GAYA GERAK LISTRIK ( GGL dengan simbol E) dari sumber listrik tersebut.
  • Transistor adalah komponen elektronika yang terbuat dari dari bahan semi konduktor jenis N dan jenis P. Transistor memiliki 3 kaki yaitu: basis (B), kolektor (C) dan emitor (E). Berdasarkan susunan semikonduktor yang membentuknya, transistor dibedakan menjadi dua tipe, yaitu transistor jenis PNP dan transistor jenis NPN.
  • Panjang pita kaset pada umumnya 2400 feet, lebarnya 0.5 inch dan tebalnya 2 mm. Data disimpan dalam bintik kecil yang bermagnit dan tidak tampak pada bahan plastik yang dilapisi ferroksida. Flexible plastiknya disebut mylar. Mekanisme aksesnya adalah tape drive.
  • Camcorder adalah alat perekam elektronik portable yang mempunyai kemampuan videolive-motion dan audio untuk kemudian dimainkan di Video Cassete Recorder (VCR),TV, dan Komputer
  • Audio berarti “suara” atau “reproduksi suara”. Dalam ilmu fisika, suara adalah bentuk energi yang dikenal sebagai energi akustik

Kamis, 19 Mei 2016

Pengertian Dasar Audio

Pengertian Dasar Audio

Audio berarti “suara” atau “reproduksi suara”. Dalam ilmu fisika, suara adalah bentuk energi yang dikenal sebagai energi akustik. Secara khusus, mengacu pada rentang frekuensi yang dapat dideteksi oleh telinga manusia – sekitar 20Hz to 20kHz. Frekuensi 20Hz merupakan nada suara terendah (bassiest) yang kita bisa dengar, dan 20kHz merupakan nada tertinggi yang kita bisa dengar.

Lingkup kerja audio meliputi produksi, perekaman, manipulasi dan reproduksi gelombang suara. Untuk memahami audio Kita harus memiliki pemahaman tentang dua hal:
  1. Sound Waves: Apa arti sound waves, bagaimana terjadinya dan bagaimana kita dapat mendengarnya.
  2. Sound Equipment: Mengenai komponen-komponennya, cara kerjanya, bagaimana memilih peralatan yang benar dan cara penggunaannya.
Untungnya hal itu tidak terlalu sulit. Teori audio lebih sederhana daripada teori video.Catatan Teknis:

Lingkup Kerja Audio

Lingkup kerja audio sangatlah luas, dengan berbagai bidang spesialisasi. Mulai dari hanya sekedar hobby hingga profesional. Secara umum lingkup kerja audio meliputi:
  • Studio Sound Engineer
  • Live Sound Engineer
  • Musician
  • Music Producer
  • DJ
  • Teknisi Radio
  • Film/Television Sound Recordist
  • Field Sound Engineer
  • Audio Editor
  • Post-Production Audio
Selain itu, banyak profesi lain yang memerlukan tingkat kemahiran audio. Sebagai contoh, operator kamera video harus tahu tentang audio untuk dapat merekam suara berkualitas baik dengan kamera mereka.
Berbicara tentang pembuatan video, harus diakui pentingnya audio dalam film dan video. Kesalahan umum di kalangan amatir adalah hanya berkonsentrasi pada visi dan mengasumsikan bahwa selama bekerja mikrofon audio akan baik-baik saja. Namun, audio yang baik, membutuhkan keterampilan dan usaha.
Kebanyakan pekerjaan dalam produksi audio membutuhkan semacam keahlian khusus, apakah itu micing pada drum kit, atau menciptakan efek suara sintetis. Sebelum kita melangkah lebih lanjut untuk mempelajari tugas-tugas tertentu, Kita harus memastikan bahwa Kita memiliki lkitasan pengetahuan umum dalam prinsip-prinsip suara. Setelah Kita melakukan PR ini dengan baik, Kita akan ditempatkan untuk memulai spesialisasi.
Hal pertama yang harus kita kuasai adalah dasar teori gelombang suara (Sound Waves)…
Bagaimana Sound Waves Bekerja
Sebelum Kita mempelajari bagaimana peralatan sound bekerja, sangat penting untuk memahami kerja gelombang suara. Pengetahuan ini akan menjadi dasar dari segala sesuatu yang akan Kita lakukan di bidang audio.
Gelombang suara terjadi sebagai variasi tekanan dalam sebuah media, seperti udara. Ia tercipta dari bergetarnya sebuah benda, yang menyebabkan udara sekitarnya ikut bergetar. Udara yang bergetar kemudian diterima oleh telinga, menyebabkan gendang telinga manusia bergetar, kemudian otak menafsirkannya sebagai suara.
Gelombang suara berjalan melalui udara, sama seperti gelombang yang terjadi di air. Bahkan, gelombang air lebih mudah untuk dilihat dan dimengerti, hal ini sering digunakan sebagai analogi untuk menggambarkan bagaimana gelombang suara berperilaku.
Gelombang suara juga dapat ditampilkan dalam stkitar grafik XY. Hal ini memungkinkan kita untuk membayangkan dan bekerja dengan gelombang dari sudut pkitang matematika.
Perhatikan, bahwa suatu grafik gelombang berbentuk dua dimensi, tetapi di dunia nyata gelombang suara berbentuk tiga-dimensi. Grafik menunjukkan gelombang bergerak sepanjang jalan dari
kiri ke kanan, tapi kenyataannya perjalanan gelombang suara bergerak ke segala arah menjauhi sumber. Kira-kira sama seperti riak air yang terjadi ketika kita menjatuhkan sebuah batu ke dalam kolam. Namun model 2-dimensi ini, cukup dapat menjelaskan tentang bagaimana suara bergerak dari satu tempat ke tempat lain.
Hal berikutnya yang perlu diperhatikan adalah : apa artinya ketika gelombang mencapai titik tertinggi atau titik rendah.
Pada sinyal elektronik, nilai tinggi menunjukkan tegangan positif yang tinggi. Ketika sinyal ini dikonversi menjadi gelombang suara, Kita dapat membayangkan nilai-nilai tinggi tersebut sebagai daerah yang mewakili peningkatan tekanan udara. Ketika gelombang menyentuh titik tertinggi, hal ini berhubungan dengan molekul udara yang menyebar bersama-sama secara padat. Ketika gelombang menyentuh titik rendah, molekul udara menyebar lebih tipis (renggang).
Sekarang ada satu hal penting: Semua pekerjaan audio adalah memanipulasi gelombang suara. Hasil akhir dari pekerjaan Kita adalah rangkaian tekanan tinggi dan tekanan rendah dari gelombang suara. Itulah mengapa sangat penting untuk memahami bagaimana suara bekerja – karena suara adalah “materi” seni Kita.
Bagian-bagian Gelombang Suara
Semua gelombang memiliki sifat-sifat tertentu. Ada tiga bagian yang paling penting untuk audio :
Panjang gelombang: Jarak antara titik manapun pada gelombang (pada gambar ditunjukkan sebagai titik tertinggi) dan titik setara pada fase berikutnya. Secara harfiah, panjang gelombang adalah jarak yang digambarkan dgn huruf “T”.
Amplitudo: atau kekuatan sinyal gelombang (intensity). Titik tertinggi dari gelombang bila dilihat pada grafik. Amplitudo tinggi biasa disebut sebagai volume yang lebih tinggi, diukur dalam dB. Nama perangkat untuk meningkatkan amplitudo disebut amplifier.
Frequency: Frekuensi waktu yang dibutuhkan oleh gelombang bergerak dari satu pase ke pase berikutnya dalam satu detik. Diukur dalam herz atau cycles per second. Semakin cepat sumber suara bergetar, semakin tinggi frekuensi.
Frekuensi yang lebih tinggi ditafsirkan sebagai pitch yang lebih tinggi. Sebagai contoh, ketika Kita menyanyi dengan suara bernada tinggi Kita memaksa pita suara Kita bergetar lebih cepat.

Sistem Suara (Sound System)

Bekerja dengan audio berarti bekerja dengan sistem suara (sound system). Tentu saja, sangat banyak sound system yang tersedia dengan aneka aplikasi yang berbeda, tergantung merk dan model. Namun, semua sound system elektronik memiliki satu konsep yang sama, yaitu : Untuk mengambil gelombang suara, mengkonversinya menjadi arus listrik dan memanipulasi mereka sesuai yang diinginkan, kemudian mengubahnya kembali menjadi gelombang suara.
Sebuah sistem suara sangat sederhana terdiri dari dua jenis komponen:
  • Transducer – Perangkat yang mengubah energi akustik menjadi energi elektrik atau sebaliknya. Dua jenis transduser yang sering kita gunakan adalah mikrofon(yang mengubah energi akustik menjadi energi listrik) dan speaker (yang mengubah energi listrik menjadi energi akustik).
  • Amplifier – Perangkat yang menerima sinyal dan meningkatkan kekuatannya (yakni meningkatkan amplitudo sinyal tersebut).
  1. Proses bermula dari sumber suara (seperti suara manusia, instrumen musik, dll), yang menciptakan gelombang suara (akustik energi).
  2. Gelombang ini dideteksi oleh transduser (mikrofon), yang merubahnya menjadi energi listrik.
  3. Sinyal listrik dari mikrofon sangat lemah, jadi harus diberikan penguatan.
  4. Loudspeaker mengubah sinyal listrik kembali ke gelombang suara, sehingga dapat didengar oleh telinga manusia.
Pada diagram sebuah sistem yang sedikit lebih rumit biasanya memiliki fungsi tambahan, yang meliputi:
  • Sinyal prosesor – perangkat dan software yang memungkinkan manipulasi sinyal. Prosesor yang paling umum adalah tone adjuster seperti kontrol nada bass dan treble.
  • Bagian Perekaman dan pemutaran – perangkat yang mengkonversi sinyal ke format penyimpanan tertentu untuk reproduksi lebih lanjut. Format perekam tersedia dalam berbagai bentuk, seperti pita magnetik, optik CD, hard drive komputer, dll.
  1. The audio signal from the transducer (microphone) is passed through one or more processing units, which prepare it for recording (or directly for amplification). Sinyal audio dari transduser (mikrofon) melewati satu atau lebih processing unit, yang kemudian menghasilkan out put untuk kemudian direkam (atau untuk di amplifikasi).
  2. Sinyal dihubungkan ke perangkat perekam untuk penyimpanan.
  3. Sinyal yang disimpan akan diputar kembali dan diolah lebih lanjut.
  4. Sinyal diperkuat dan dihubungkan kepada pengeras suara.
The 3-part audio model 3-bagian model audio
Salah satu cara sederhana untuk memvisualisasikan sistem audio adalah dengan membaginya menjadi tiga bagian: sumberprosesor dan output.
  • Sumber adalah tempat sinyal audio elektronik yang diterima. This could be a “live” source such as a microphone or electric musical instrument, or a “playback” source such as a tape deck, CD, etc. Bisa berasal dari sumber “live” seperti mikrofon atau alat musik elektrik, atau sumber “playback” seperti tape deck, CD, dll.
  • Bagian pengolahan adalah tempat di mana sinyal dimanipulasi. “Amplifiertermasuk ke dalam bagian ini. contoh : graphic equaliser , left/right stereo balance, and amplifiers.
  • Bagian output adalah tempat di mana sinyal diubah menjadi gelombang suara (oleh pengeras suara), sehingga dapat didengar oleh manusia. Output bisa berupa headphone atau loud speaker.
Sekarang bayangkan sound system yang digunakan untuk konser stadion dengan menggunakan daya multi-kilowatt. Walaupun ini merupakan sistem yang kompleks, pada dasarnya sama, terdiri dari tiga bagian: Sumber (mikrofon, instrumen, dll),prosesor dan speaker.
Berapapun besaran skala proyek, prinsip-prinsip dasar yang sama akan tetap berlaku

Teori Pertelevisian & Perfilman

Teori Dasar dan Istilah dalam Dunia Pertelevisian & Perfilman

Camcorder
Camcorder adalah alat perekam elektronik portable yang mempunyai kemampuan videolive-motion dan audio untuk kemudian dimainkan di Video Cassete Recorder (VCR),TV, dan Komputer.Camcorder terdiri dari kamera dan recorder yang bentuk aslinya ada pada awal1980-an.Camcorder juga disebut Video Recorder. Biasanya konsumen menggunakan camcorder
untuk membuat film keluarga, Peistiwa khusus, atau liburan. Camcorder yang bagus,
misalnya DCR-VX200E dari SONY, camcorder ini sudah dapat digunakan membuat
profil perusahaan atau bahkan membuat iklan televisi.Camcorder yang lebih bagus
lagi adalah Sony DSR-PD150DV Cam, yang menyediakan kualitas tinggidalam format
DV Cam, mampu merekam selama 45 menit dalam pita Mini DVCAM atau satu jam penuh
penuh dalam mode DV. Camcorder ini cocok untuk aplikasi Event Vedeography dan
Video Jurnalist.

Snappy
Snappy Video Napshot adalah suatu modul penangkap gambar yang menghubungkan
paralel port bagian belakang desktop atau laptop PC.Snappy dapat menangkap
gambar diam dari beberapa sumber video, misalnya kamera video dengan resolusi
sampai 1500 x 1125 pixel dengan 16 juta warna.

Media penyimpanan.
a. HardDisk Portable.
Hardisk ini bentuknya agak lebih kecil dari HardDisk PC biasa,tetapi dibagian
depannya terdapat semacam LCD kecil untuk mengetahui data/kapasitas simpan
didalamnya.

b. Magnetic Tape.
Magnetic Tape(Pita Magnetik) merupakan model pertama dari External Storage (Secondary
Storage).Pita Magnetik umumnya mempunyai lebar 0,5 inchi, terdiri dari gulungan
besar yang panjangnya bisa mencapai 2000 feet. Sekarang pita magnetik berbentuk
cartridge. Data ditulis pada pita magnetik dengan memberikan sifat magnetis pada
daerah sepanjang pita.Macam-macam Magnetik tape, misalnya:
- Mini cartridge : dapat menampung data sebesar 250 MB sampai 8 GB).
- Videotape/Videocassette (Pita Video/Kaset Video) : merupakan alat penyimpanan
komputer yang banyak ditemui dipasaraan.Videotape terdiri dari berbagai macam
format, baik dalam format analog maupun digital. Format analog misalnya VHS, S-VHS
ataupun format berkualitas broadcast, yaitu : Betacam, Format digital dapat
dalam MiniDV, DVC-Pro,DVCAM, HDCAM, Hi8, DVHS, atau format digital untuk
kualitas broadcast Betacam Digital.


Ring Zoom.
Ring Zoom merupakan suatu pengambilan gambar dengan cara memperbesar ataupun
memperkecil tampilan dalam Video Recorder.

Iris.
Iris adalah meninggi rendahkan kemampuan kamera untuk mengambil cahaya.

Starter Speed.
StarterSpeed adalah kemampuan kamera untuk menangkap kecepatan gerak suatu obyek,
dalam hal ini bisa dilakukan secara otomatis maupun manual (40, 60, sampai 100).

Suite Gain.
Suite Gain merupakan kemampuan kamera untuk menangkap maupun meninggikan cahaya.

W.B (White Balance).
adalah pengaturan kamera untuk mendapatkan warna/gambar yang real(Putih).

Framing

Longshot : Ukuran gambar yang sangat jauh, yang menggambarkan /menunjukkan waktu,
keberadaan
Medium long shot : ukuran gambar yang agak jauh
Full shot: pengambilan ukuran gambar dalam jarak pendek.
Karakter Frame
Macam-macam karakter frame :
High level : yaitu menggambarkan orang yang lebih rendah, misalnya karakter (Pengemis,
anak yatim, dsb.)
Low level : yaitu menggambarkan orang yang lebih tinggi(Presiden, pejabat, cll).
Medium level : yaitu menggambarkan orang yang sejajar, misalnya(Mahasiswa,
karyawan, dsb).

Istilah- istilah dalam dunia perfilman , antara lain:
Stock Footage
Materi siap pakai: mulai dari newsreels, dokumenter dan fitur film, yang
dipandang berguna untuk film lainnya. Tujuan penggunaan stock footage dari
perpustakaan mungkin untuk otentisitas historis dan / atau biaya yang lebih
rendah.

Anamorphic
Lensa yang digunakan dalam fotografi untuk memperkecil gambar wide screen ke
ukuran 35 mm. Proses ini dibalik ketika memproyeksikan hasil akhir film,
memunculkan gambar kembali ke ukuran normal pada layar lebar.

Animasi
Membuat film dengan merekam sekumpulan urutan gambar atau kartun, satu frame
tiap satu satuan waktu, tiap gambar memiliki sedikit perbedaan sehingga ketika
seluruh gambar diputar oleh proyektor pada kecepatan tertentu akan memunculkan
pergerakan.

Aspect Ratio
Perbandingan antara lebar dan tinggi bingkai gambar (frame). Rasio untuk
tayangan televisi adalah 1,33:1, artinya lebar frame yang muncul di televisi
adalah 1,33 kali dari tinggi.

Available Light
Pengambilan gambar tanpa tambahan cahaya buatan manusia.

Best Boy
Asisten Gaffer atau asisten Key Grip.

Blow Up
Perbesaran ukuran film dari 16 mm ke 35 mm yang dilakukan di laboratorium untuk
diputar di bioskop. Istilah ini juga dipergunakan dalam fotografi untuk
memperbesar foto guna keperluan display atau promosi.

Boom Man
Individu yang mengoperasikan mikrofon boom yang menunjang mikrofon yang
digunakan untuk merekam dialog dalam adegan.

Call Sheet
Pencatatan yang digunakan oleh asisten sutradara untuk selalu mengetahui
individu yang dibutuhkan dalam proses pemfilman beserta waktunya. Kadang sebuah
salinannya diberikan pada para aktor dalam film.

Camera Angle
Sudut Kamera. Ruang pandang kamera ketika sebuah set akan diambil gambarnya.
Istilah tinggi, rendah dan lebar didasari oleh norma imajiner dengan perkiraan
kamera 35 mm dengan lensa 2 inci (50 mm) mengarah pada adegan setinggi bahu.

Camera Report
Sebentuk salinan yang disimpan dalam tiap magazine film tempat asisten kameramen
mencatat panjang pengambilan tiap adegan, nomer adegan dan perintah untuk
mencetak atau tidak. Laporan kamera diberikan ke laboratorium proses, bagian
kamera dan bagian produksi.

Camera Tracks (Lintasan Kamera)
Lintasan metal dan atau lembaran kayu lapis ukuran 4’ x 8’ yang diletakkan
di lantai untuk membawa dolly atau camera boom. Lintasan digunakan untuk
menjamin kehalusan gerakan kamera.

Casting Director
Orang yang memimpin pemilihan dan pengontrakan aktor untuk memenuhi bagian yang
dibutuhkan dalam sebuah naskah.

Cinema Scope
Nama dagang untuk tujuan pemrosesan fotografi dan proyeksi yang mengikutsertakan
kamera dengan lensa anamorfik atau proyektor dan layar berlekuk ekstra panjang.
Memungkinkan proyeksi dari gambar yang jauh lebih besar dari ukuran biasanya.
Banyak film epic dibuat dalam Cinema Scope karena pengaruh dari ukuran terhadap
para penonton.

Cinematographer (Penata Fotografi)
Orang yang melaksanakan aspek teknis dari pencahayaan dan fotografi adegan.
Sinematografer yang kreatif juga akan membantu sutradara dalam memilih sudut,
penyusunan dan rasa dari pencahayaan dan kamera.

Composite Print
Film yang telah diedit, termasuk semua gambar, suara dan trek musik yang telah
dicetak ke dalam sebuah film.

Cover Shot.
Bagian dari pengambilan film untuk menyediakan materi transisi dari satu bagian
ke bagian lain dalam sebuah adegan yang sama. Bisa juga digunakan sebagai gambar
tambahan/cadangan kalau-kalau perekaman pertama tidak berhasil.

Dolly
Kendaraan beroda untuk membawa kamera dan operator kamera selama pengambilan
gambar. Dolly biasanya dapat didorong dan diarahkan oleh satu orang yang disebut
dolly grip.

Dubbing
Perekaman suara manusia secara sinkron dengan gambar film. Suaranya dimungkinkan
berasal dari aktor yang sesungguhnya atau orang lain, baik dengan bahasa yang
digunakan saat film diproduksi atau bahasa asing sebagai terjemahan. Dubbing
biasanya diselesaikan denggan menggunakan film loops – bagian pendek dari sebuah
gambar beserta dialognya dalam bentuk married print-. Aktor menggunakan gambar
dan sound track playback sebagai panduan untuk mensinkronisasikan gerakan bibir
dalam gambar dengan perekaman suara baru. Umumnya digunakan untuk memperbaiki
perekaman asli yang buruk, performa artistik yang tidak dapat diterima atau
kemungkinan kesalahan dalam dialognya. Juga digunakan untuk perekaman lagu dan
versi bahasa lain setelah proses pemfilman.

Editor Film
Orang yang bertanggung jawab untuk mendapatkan seluruh potongan gambar dan
mengaturnya ke dalam kesatuan yang koheren. Pada banyak kesempatan, seorang
editor kreatif dapat menyelamatkan atau minimal meningkatkan versi akhir film.

Establishing Shot
Pengambilan jarak jauh, biasanya eksterior, yang menekankan keberadaan dari
adegan (misalnya : letak geografi).

Footage
Unit pengukuran yang digunakan untuk film. Berarti juga stok gambar yang pernah
direkam.

Frames per Second (fps).
Sebuah film 35 mm berputar dalam kamera dengan kecepatan normal menghasilkan 24
frame tiap detik sehingga bila lebih banyak frame yang diputar tiap detiknya,
aksi dari subjek akan diperlambat ketika diproyeksikan dalam kecepatan normal.
Bila lebih sedikit dari 24 frame yang diputar maka aksi tampak dipercepat bila
diproyeksikan dengan kecepatan normal.

Hand Held
Mengambil gambar dengan kamera ringan seperti Arriflex, Éclair, Beaulieu atau
handycam, jenis yang dapat dioperasikan dengan tangan tanpa bantuan atau
meletakkannya pada gear head dan tripod.

Jump Cut
Melakukan pemotongan dari suatu pengambilan gambar ke gambar lainnya pada sebuah
film tanpa ada penyesuaian. Juga berarti berpindah dari long shot (pengambilan
jarak jauh) ke close-up atau sebaliknya, tanpa ada perubahan pada sudut kamera.

Stock Footage.
Materi siap pakai: mulai dari newsreels, dokumenter dan fitur film, yang
dipandang berguna untuk film lainnya. Tujuan penggunaan stock footage dari
perpustakaan mungkin untuk otentisitas historis dan / atau biaya yang lebih
rendah.

Married Print.
Gabungan antara track gambar dan suara setelah film selesai diedit. Istilah ini
lebih digunakan untuk format film dan tidak dikenal dalam produksi dengan format
video.

P. O. V.
Point of View (Sudut Pandang). Sudut kamera yang memperlihatkan apa yang dilihat
oleh seseorang yang berada dalam film.

Reflector.
Pemantul: sebentuk permukaan berlapis perak yang digunakan untuk merefleksikan /
memantulkan cahaya. Untuk pengambilan film eksterior, pemantul sering digunakan
untuk mengarahkan sinar matahari ke bagian dari adegan. Untuk pencahayaan
interior, pemantul adalah bagian dari lampu studio yang digunakan untuk
meningkatkan jumlah penerangan dari sebuah bola lampu.

Slow Motion
Mengekspose film lebih cepat dari standar 24 frame tiap detik sehingga ketika
diproyeksikan dengan kecepatan normal maka aksi yang ada akan lebih lambat dari
normal.

Sound Track
Pita kecil sepanjang film (pada pita seluloid) yang memuat suara dalam film.
Pada kesempatan-kesempatan tertentu, misalnya pada suara stereofonik atau untuk
pendistribusian di luar negeri dengan mempertahankan musik dan efek asli namun
dilakukan penyulihan suara untuk dialognya, maka menggunakan lebih dari satu
pita.

Stock Footage
Materi siap pakai: mulai dari newsreels, dokumenter dan fitur film, yang
dipandang berguna untuk film lainnya. Tujuan penggunaan stock footage dari
perpustakaan mungkin untuk otentisitas historis dan / atau biaya yang lebih
rendah.

Story Board
Sejumlah sketsa yang menggambarkan aksi di dalam film, atau bagian khusus film
yang disusun teratur pada papan buletin dan dilengkapi dengan dialog yang sesuai
waktunya atau deskripsi adegan. Story board digunakan untuk mempermudah dan
mempermurah pengambilan gambar.

Teori Dasar Transistor

Teori Dasar Transistor


Transistor adalah komponen elektronika yang terbuat dari dari bahan semi konduktor jenis N dan jenis P. Transistor  memiliki 3 kaki yaitu: basis (B)kolektor (C) dan emitor (E). Berdasarkan susunan semikonduktor yang membentuknya, transistor dibedakan menjadi dua tipe, yaitu transistor jenis PNP dan transistor jenis NPN. Untuk membadakan transistor PNP dan NPN dapat dari arah panah pada kaki emitornya. Pada transistor PNPanak panah mengarah ke dalam dan pada transistor NPN arah panahnya mengarah keluar.

Simbol Transistor :


















Bentuk Fisik Transistor :

Bentuk Fisik Transistor
Bentuk Fisik Transistor

Fungsi Transistor :
  1. Penguat Tegangan
  2. Penguat Arus
  3. Penguat Daya
  4. Saklar
  5. Sensor Suhu
  6. Regulator tegangan
  7. Osilator / Pembangkit sinyal
  8. Modulator Sinyal
Mengenal tipe transistor buatan jepang:
  1. Tipe 2SA… dan 2SC… biasanya digunakan pada frekuensi tinggi
    Contoh : 2SA564 dan 2SC838
  2. Tipe 2SB… dan 2SD… biasanya digunakan pada frekuensi rendah
    Contoh : 2SB507 dan 2SD313
Hal-hal penting mengenai transistor :
  1. Transistor yang mempunya fisik lebih besar biasanya mampu bekerja pada daya yang lebih besar
  2. Pada tipe-tipe transistor dikenal adanya persamaan karakteristik, jadi jika sulit mendapatkan sebuah transistor cobalah mencari persamaannya
  3. Urutan kaki transistor antara tipe satu dengan yang lain  tidak selalu sema.
  4. Untuk pemakaian dengan daya yang tinggi sebaiknya tambahkan pendingin pada bodi transistor.
  5. Panas yang berlebih pada transistor dapat berakibat kerusakan transistor.
  6. Pada transistor dikenal istilah HFE, yaitumenunjukkan besarnya penguatan arus dari transistor tersebut
  7. Tegangan antara basis (B) dan emitor (E) besarnya selalu tetap, yaitu berkisar antara 0.6Volt untuk jenis transistor dari bahan silikon.
  8. Untuk bisa bekerja, sebuah transistor memerlukan bias sekitar 0.6Volt untuk jenis silikon. Pada transistor PNP basis harus lebih negatif 0.6Volt dan pada transistor NPN basis harus lebih positif 0.6Volt.
Woollard (1993: 70) menyatakan bahwa transistor merupakan alat dengan tiga terminal seperti yang diperlihatkan oleh simbol sirkit pada gambar 1. Setelah bahan semikonduktor dasar diolah, terbentuklah bahan semikonduktor jenis P dan N. Walaupun proses pembuatannya banyak, pada dasarnya transistor merupakan tiga lapis gabungan kedua jenis bahan tadi, yaitu NPN atau PNP.


Gambar 1, Simbol sirkit untuk transistor (a) PNP, (b) NPN

(Sumber : Barry Woollard, Elektronika Praktis, 1993: 70)



Simbol sirkit kedua jenis transistor itu hampir sama. Perbedaannya terletak pada arah tanda panah di ujung emitter, seperti yang telah diketahui, arah tanda panah ini menunjukkan arah aliran arus konversional yang berlawanan arah dalam kedua jenis tadi tetapi selalu dari jenis P ke jenis N dalam sirkit emitter dasar.



Gambar 1 Bentuk nyata transistor



Transistor NPN

Menurut Woollard (1993: 70) Kolektor dan emitter merupakan bahan N dan lapisan diantara mereka merupakan jenis P. Pada mulanya diperkirakan bahwa transistor seharusnya bekerja dalam salah satu arah, ialah dengan saling menghubungkan ujung-ujung kolektor dan emitter karena mereka terbuat dari jenis bahan yang sama. Namun, hal ini tidaklah mungkin karena mereka tidak berukuran sama. Kolektor berukuran lebih besar dan kebanyakan dihubungan secara langsung ke kotaknya untuk penyerapan panas. Ketika transistor digunakan hampir semua panas yang terbentuk berada pada sambungan basis kolektor yang harus mampu menghilangkan panas ini. Sambungan basis emitter hanya mampu menahan tegangan yang rendah.

Operasi dalam arah balik dapat dijalankan tetapi tidak efisien, sehingga tidak sesuai dengan metode hubungan praktis karena sangat sering merusakkan alat. Pada umumnya transistor dianggap sebagai suatu alat yang beroperasi karena adanya arus. Kalau arus mengalir ke dalam basis dan melewati sambungan basis emitter suatu suplai positif pada kolektor akan menyebabkan arus mengalir diantara kolektor dan emitter. Dua hal yang harus diperhatikan pada arus kolektor adalah :

1. Untuk arus basis nol, arus kolektor turun sampai tingkat arus kebocoran yaitu kurang dari 1 mF dalam kondisi normal (untuk transistor silikon).

2. Untuk arus basis tertentu, arus kolektor yang mengalir akan jauh lebih besar daripada arus basis itu. Arus yang dicapai ini disebut hFE, dengan  







dimana, iC = perubahan arus kolektor

iB = perubahan arus basis

hFE = arus yang dicapai


Transistor PNP
Transistor PNP beroperasi dengan cara yang sama dengan piranti NPN. Gambar dibawah ini akan memperlihatkan suatu transistor PNP yang dibias untuk beroperasi dalam mode aktif. Disini tegangan VEB menyebabkan emitter tipe P potensialnya lebih tinggi dari basis tipe –N, sehingga persambungan basis emitter menjadi bias maju. Persambungan kolektor basis dibias balik oleh tegangan VBC yang menjaga basis tipe-N berpotensial lebih tinggi dibandingkan kolektor tipe-P. Tidak seperti transistor NPN, arus dalam piranti PNP terutama disebabkan oleh lubang yang diinjeksikan dari emitter ke dalam basis sebagai tegangan bias maju VEB. Karena komponen arus emitter yang disebabkan elektron yang diinjeksikan dari basis ke emitter dijaga agar kecil dengan menggunakan basis doping ringan, sebagian besar arus emitter disebabkan oleh lubang. Elektron yang diinjeksi dari basis ke emitter menghasilkan komponen dominan arus basis iB1. Demikian juga lubang yang diinjeksi ke dalam basis akan berkombinasi dengan pembawa mayoritas dalam basis (elektron) dan hilang. Hilangnya elektron basis harus diganti dari rangkaian luar yang menimbulkan komponen kedua arus basis iB2. lubang-lubang yang berhasil mencapai batas daerah pengosongan persambungan basis kolektor akan tarik oleh tegangan negatif pada kolektor. Jadi lubang-lubang ini akan disapu melintasi daerah pengosongan ke dalam kolektor dan timbul sebagai arus kolektor.

 Karakteristik Operasi Transistor

Karakteristik operasi tiap transistor yang menyatakan spesifikasinya tidak boleh dilampaui. Lembaran data memberikan nilai-nilai penting, beberapa diantaranya diberikan dibawah ini dan diperlihatkan pada gambar 2.


VCBO = tegangan basis kolektor maksimum (kolektor +ve)

VCEO = tegangan emitter kolektor maksimum (kolektor + ve)

VEBO = tegangan basis emitter maksimum (emitter + ve)

Ptot = total daya yangdiperlukan oleh transistor.



Gambar 2. Karakteristik operasi tegangan transistor

(Sumber : Woollard, Elektronika Praktis, 1993: 73)


Transistor Sebagai Saklar

Menurut Barry Woollard (1993: 73) mengatakan bahwa jika arus basis IB nol, arus kolektorIC akan menjadi arus kebocoran yang rendah dan tegangan yang melalui resistor muatanRL akan sia-sia. Oleh karena itu:

VCE ≈ VCC tegangan suplai

Kalau jumlah nominal IB kecil, IC akan sama dengan hFE IB dan tegangan yang melalui RL, akan menjadi:

VR = ICRL

dan VCE = VCC - ICRL

Naiknya Iakan menyebabkan IC naik terus hingga mencapai titik ICRL ≈ VCC, yaitu ketikaIC tidak dapat naik lagi, meski IB tetap naik.

Pada titik ini transistor dikatakan mendapat aliran secara kerassampai ke dasar atausarat, dan tegangan VCE disebut VCE sarat tegangan output yang sarat. Biasanya tegangan ini sebesar 0,2 Volt untuk transistor silicon serta dapat sekecil beberapa puluh milivolt, tetapi tidak lebih dari 0,3 Volt.



Gambar 3 Transistor sebagai saklar
(Sumber : Woollard, Elektronika Praktis, 1993: 74)


Contoh: Diketahui sebuah transistor mengatur beban 0,5A dengan suplai d.c. 12V

1. Ketika transistor itu OFF (mati) :

Anggaplah IC = 1µA yaitu hanya sebesar arus kebocoran.

VCE ≈ VCC = 12V.

Oleh karena itu, pemakaian daya oleh transistor,

P = VCE IC

= 12 x 1
= 12µW.

2. Ketika transistor itu ON (hidup) :

IC = 0,5 A.

VCE = VCC sarat

≈ 0,2 V.

Oleh karena itu, pemakaian daya oleh transistor,

P = VCE IC

= 0,2  x 0,5 
= 0,1W

3. Ketika transistor itu baru bekerja setengah jalan:

IC = 0,25 A.

VCE = 6 V.

Oleh karena itu, pemakaian daya oleh transistor,

P = VCE x IC

= 6 x 0,25 
= 1,5 W.

Kalau daerah pemakian daya ditengah dapat dilalui dalam waktu singkat, transistor itu akan bekerja baik dengan daya ON dan OFF. ekstrem yang rendah, dan segalanya akan berjalan lancar. Akan tetapi arus beban tidak boleh melebihi I(max).

Menurut Owen Bishop (2004: 72) mengatakan bahwa rangkaian saklar transistor memanfaatkan fitur terpenting dari sebuah transistor BJT-gain. Terdapat lebih dari satu definisi untuk gain yang akan merujuk untuk gain arus sinyak kecil (Small Signal Current Gain). Gain tidak memiliki satuan. Gain hanyalah sebuah bilangan, karena besaran ini merupakan hasil dari pembagian arus dengan arus. Gain sebuah transistor BJT
yang tipikal adalah 100. Rangkaian dibawah ini digunakan untuk memperlihatkan dan menjelaskan secara sederhana konsep gain transistor.


Gambar 4 Rangkaian transistor sebagai saklar

(Sumber : Warsito S, Vademekum Elektronika, 1995: 184)




dimana : IC = arus kolektor

IB = arus basis

RB = hambatan basis

RC = hambatan kolektor

VCC = tegangan input

Denyut sulut (Tringger Pulse) perlu setinggi :

VB = IB R+ 0,6 V

Jumat, 13 Mei 2016

Teori Dasar Listrik Dan Alat Ukur Listrik

TEORI DASAR LISTRIK
1. TAHANAN DARI PENGHANTAR LISTRIK
Semua bahan bagaimanapun murninya selalu mempunyai tahanan listrik, yang mana tahanan ini tergantung tahanan jenis ( ρ ) bahan itu sendiri.
Tahanan tersebut tergantung dari bahan; berbanding lurus dengan panjang dan berbanding terbalik dengan penampang penghantar tersebut.
Temperatur juga akan mempengaruhi besarnya tahanan. Baik atau buruknya tahanan suatu penghantar ditentukan oleh;
a. TAHANAN JENIS ( ρ = Rho )
ρ = adalah menunjukkan tahanan darin suatu penghantar panjang 1 meter, penampang 1 mm2 pada suhu 20 o C.
Satuan dari nilai ini adalah ohm milimeter kwadrat permeter ( ).
A= 1mm2 pada 20 o C
panjang (l)= 1 m
b. DAYA HANTAR ( = Kappa )
א = adalah bilangan yang menunjukkan panjang dalam meter dari sebuah penghantar yang penampangnya 1 mm2 dan tahanannya 1 Ω.
Nilai daya hantar adalah kebalikan dari tahanan jenis, yaitu =
Nilai daya hantar adalah bermacam-macam tergantung dari bahannya. Pada umumnya adalah kita menghitung dengan;
Contoh 1: Daya hantar tembaga adalah
Hitung tahanan jenis tembaga ?
Jawab : = → ρ = =
Catatan: Makin tinggi tahanan jenis serta makin panjang penghantarnya dan makin kecil penampangnya adalah = makin tinggi tahanan dari penghantarnya.
Tahanan jenis harganya 0,01786 atau
Hantaran jenis harganya 56 ( atau kebalikan dari tahanan jenis )
dimana;
R = Tahanan atau hambatan ( Ω )
= Tahanan jenis
= Daya hantar
l = Panjang ( m )
A = Luas ( mm2 ).
– Hambatan adalah gesekan atau rintangan yang diberikan suatu bahan terhadap suatu aliran arus.
– Hambatan itu antara lain ; lampu, kumparan, elemen panas, dsb.
– Ukuran semua jenis kawat telanjang biasanya diameternya ( Ф ) dalam mm.
– Ukuran penghantar jenis kawat berisolasi biasanya penampang dalam mm2.
Contoh 2 : Tahanan kawat Manganin pada suatu alat ukur dengan diameter 0,1 mm. Berapa panjang kawat tersebut jika R=100 Ω ?
Jawab : A = d2 . 0,785 = 0,12 . 0,785 = 0,00785 mm2
→ 100 . 2,3 . 0,00785 = 1,806 m.
Contoh 3 : Sebuah kumparan dari NYA 2,5 mm2, panjang 50 m .
Hitung tahanannya sebelum digulung ?
Jawab : atau
2. KERAPATAN ARUS ( S )
Yaitu beasarnya arus per mm2 luas penampang
Kerapatan arus ( ) =
Contoh 1 : Suatu arus sebesar 0,2 A mengalir melalui bola lampu.
Berapa kerapatan arus:
a) Pada penghantar jala-jala yang luas penampangnya 1,5 mm2
b) Pada filamel yang luas penampangnya 0,0004 mm2
Jawab : a) S =
b) S =
Catatan : – S dalam satuan A/mm2 untuk penghantar (kawat2), elemen2,
pemanas, belitan mesin listrik, kumparan relay, dsb.
– S dalam satuan A/cm2 untuk sikat2 arang.
– S dalam satuan A/dm2 untuk pelapisan (galvanis).
Kerapatan arus yang lebih tinggi berakibat kenaikan suhu yang lebih tinggi pula pada penghantar
Cara lain untuk menghindari kerusakan isolasi dan loncatan bunga api, kerapatan arus pada penghantar pada rangkaian, gulungan kawat suatu kumparan, transformator2 dan motor2 tidak boleh melebihi dari nilai maksimum yang telah ditentukan.
Kerapatan arus untuk kumparan2 dari tembaga, yang ditentukan adalah;
1. Transformator kecil s.d 500 VA 2,0 – 2,5 A/mm2.
2. Transformator2 s.d 2 kVA 2,0 – 2,8 A/mm2. *)
3. Transformator2 s.d 20 kVA 1,7 – 2,3 A/mm2. *)
*) Tergantung pada panas yang dilepaskan pada permukaan kumparan
(pendingin).
Sirip pendingin Sirkulasi Ventilasi
4. Motor < 1,5 KW 6 – 8 A/mm2 4 – 6 A/mm2
5. Motor < 15 KW 5 – 7 A/mm2 3 – 5 A/mm2
6. Motor2 colector yang kecil 5 A/mm2
7. Motor2 dengan pendingin yang kuat 10 A/mm2
8. PCB 26 A/mm2
Contoh 1: Konduktor berdiameter berapa harus dipilih untuk untuk menggulung transformator yang kecil jika arusnya adalah 4,5 A? S= 3 A/mm2
Jawab: A =
Contoh 2: Sebuah sikat karbon mempunyai penampang 16×2,5 mm dan diberi mujatan dengan arus 28 A. Hitunglah kerapatan maksimum yang diijinkan?
Jawab: A = 16 mm x 2,5 mm = 200 mm2 = 2 cm2
S =
Contoh 3: Kawat panas yang bulat ( ρ=1Ωmm2 /m ) panjang (l) = 5,31 m dan tebalnya (d)= 0,2 mm, dihubungkan dengan tegangan 220 V.
Hitung: a) Luas penampang (A)=
b) Tahanan ( R ) =
c) Arus ( I ) =
d) Kerapatan arus ( S ) =
3. RUGI TEGANGAN ( 8 )
Rugi tegangan adalah tegangan yang hilang pada jala-jala, pada saat arus mengalir.
Makin besar arus pada jala-jala dan makin besar tahanan pada jala-jala, makin besar pula rugi tegangan yang terjadi pada jala-jala.
Rugi tegangan menyebabkan rugi daya yang dirubah menjadi bentuk panas.
Perlu diingat bahwa V = I . R
R penghantar =
Jadi rugi tegangan itu dihitung; 2 ∆ v ( Va ) = I.Rpenghantar=
Dimana, Rpenghantar = Tahanan dari satu jala saja.
2 = Panjang dari dua penghantar.
Rugi tegangan yang kecil adalah dapat diterima. Rugi tegangan biasanya ditunjukkan dengan simbol 8 dari tegangan kerjanya.
Tanda untuk rugi tegangan di dalam 8 adalah ∆ v 8 (Va).
Rugi tegangan yang diijinkan adalah;
Va – Penggunaan jala / jaringan
0,5 8 – Dari jala-jala ke KWH meter
1,5 8 – Dari meter ke peralatan pemakai / lampu penerangan
3,0 8 – Dari meter ke motor-motor / rangkaian daya.
Contoh 1: Sebuah motor dc di suplai dengan kabel NYM 2×4 mm, sepanjang 28 m, arusnya adalah 23 A. Hitunglah:
Jawab: a) Rugi tegangan (V)
b) Rugi tegangan ( 8 )
c) Periksalah apakah rugi tegangan tersebut diizinkan?
Rugi tegangan 2,6 8 adalah diizinkan karena dibawah 3,0 8.
4. RUGI DAYA ( PV )
Ingat ; P = I2.R
Rpenghantar =
Rpenghantar adalah hanya satu penghantar
Disini rugi daya (Pv) untuk jala-jala listrik dihitung;
Contoh 1: Suatu arus 45 A mengalir melalui saluran udara yang terbuat dari aluminium dengan penampang 95 mm2 sepanjang 14 km. Tegangan nominal 6 kV. Hitunglah :
Jawab:
a) Rugi daya dalam Watt
b) Rugi daya dalam 8
Contoh 2 : Sebuah alat pemanas air dayanya 4 kW mempunyai 18,2 A. Jala-jala suplainya terbuat dari tembaga sepanjang 17 meter. Rugi daya tidak lebih dari 3 8. Hitunglah :
Jawab:
a) Rugi daya maksimum yang diperbolehkan ( Watt )
b) Penampang yang diperlukan ( mm2 )
Kita pilih penampang dari 1,7 mm2 menjadi 2,5 mm2
karena penampang 1,7 mm2 tidak ada, yang ada 2,5 mm2.
c) Rugi daya efektif ( Watt )
5. ARUS LISTRIK / LAJU ALIRAN ( AMPERE )
Arus listrik hanya akan ada dalam suatu rangkaian tertutup dan jika terdapat sumber yang mendorong elektron-elektron ke satu arah. Gerakan dari elektron ini dinamakan ALIRAN ARUS.
DEFINISI:
Jika sejumlah listrik 1 C ( satu coulomb) dipindahkan melalui sebuah penampang pada suatu tempat dalam suatu rangkaian dalam waktu 1s ( satu detik), maka besar arus itu kita sebut 1 A ( satu Ampere ).
Am (Amperemeter) adalah alat untuk mengukur laju aliran. Ameter ini dipasang SERI dengan beban. Aliran arus ini harus melewati alat itu. Tempatnya dapat dimana saja dalam rangkaian itu.
Menurut perjanjian ARAH ARUS (bukan arah aliran elektron) selalu diambil dari positif ke negatif.
Elektron mengalir dari negatif Arus mengalir dari positif
ke positif. ke negatif.
Berikut ini perlu diingat pula bahwa,
Hubungan antara laju arus ( I ), Jumlah muatan listrik ( Q ), dan Waktu ( t ), adalah;
I = Q = I . t → I dari perkataan “Intensity” atau laju arus dengan
satuan Ampere.
I diukur dalam Ampere ( simbol A )
Q diukur dalam Coulomb (simbol C )
t diukur dalam detik ( simbol s = second )
Jumlah muatan listrik yang bergerak pada 1A , 1 C dan 1 s , maka terdapat ;
1A = → atau 1C = 1A x 1s
Arus bolak-balik ( ABB atau disebut juga a.c.= alternating current) ditulis dengan tanda , yang artinya bahwa jika suatu arus dimana ggl ( gaya gerak listrik ) –nya menimbulkan arus yang berganti arah dengan teratur.
Arus listrik mempunyai sifat panas, kimiawi dan kemagnitan.
Arus searah ( Arus dc = directing current ) ditulis dengan = , yang artinya bahwa jika suatu arus yang selalu mengalir dalam suatu tujuan yang sama (searah saja).
Jika pada suatu peralatan tertulis dengan simbol , artinya peralatan bisa digunakan dengan dua tegangan ac maupun dc, ( sisi primer ac dan sisi sekundernya dc, atau sebaliknya. Hal ini biasa digunakan untuk pengukuran, kontrol, proteksi, rangkaian elektronik, dsb).
6. TEGANGAN LISTRIK ( VOLT )
Tegangan listrik diukur dengan alat ukur yang bernama Volt meter (Vm), jika tegangan listrik diukur dan tidak ada rangkaian luar lainnya, maka akan kita dapatkan GAYA GERAK LISTRIK ( GGL dengan simbol E) dari sumber listrik tersebut.
Satuan untuk mengukur tegangan listrik dan GGL adalah Volt ( simbol: V ).
Tegangan selalu diukur antara dua titik, yaitu positip dan negatip, atau dalam gambar biasanya ditulis plus ( + ) dan minus ( – ), atau bis juga dengan simbol L dengan N.
Alat ukur dipasang secara PARALEL ( beda dengan Ampere meter yang dipasang secara SERI).
Alat ukur Ampere meter Alat ukur Volt meter
Tegangan adalah : Suatu tegangan yang dibutuhkan untuk menolak satuan kuat arus melalui satuan tahanan.
E (V) = I (A) x R ( Ω ) → 1 V = 1 A x 1 Ω
7. HUKUM OHM
Satuan dari hambatan atau tahanan listrik adalah OHM ( simbol : Ω , diucapkan Omega)
 Untuk menunjukkan suatu hambatan / tahanan kita gunakan huruf R
 Untuk menunjukkan suatu arus kita gunakan huruf I
 Untuk menunjukkan suatu tegangan kita gunakan huruf E
Dimana hukum Ohm, adalah : E = I x R , atau dengan perkataan;
”Arus berbanding lurus dengan tegangan dan berbanding terbalik dengan hambatan/tahanan”.
E = I x R
8. DAYA LISTRIK ( W)
Daya ialah kerja yang dilakukan dalam 1 detik atau jumlah tenaga yang digunakan dalam 1 detik ( satuan waktu ), maka akan didapatkan DAYA atau penggunaan daya.
Besaran daya menggunakan simbol P
Satuan daya ialah Watt dengan simbol W
Dimana dalam rangkaian listrik, daya berbanding lurus dengan tegangan dan arus.
Rumus :
Contoh 1 :
Contoh ini agak sukar sedikit karena E dan I belum diketahui secara langsung, maka kita ubah dulu sebagai berikut:
E=I.R → menghasilkan dan
P=I.E → menghasilkan
Sekarang kita gabungkan kedua hasil itu :
→ yang menghasilkan E2 = R.P
E2 = 1.2 = 2 → maka E =
Hubungan antara E , I , R dan P , dapat dinyatakan dengan rumus :
a. E = I . R → atau dapat diubah menjadi dan
b. P = I . E → atau dapat diubah menjadi dan
c. Ada rumus ketiga yang di dapat dari penggabungan kedua rumus itu, yaitu:
E = I . R dan P = I . E
Dimana jika E-nya diganti dengan I.R , maka menghasilkan ;
P = I . E → atau P = I . I . R → karena E sendiri adalah I.R ,
Sehingga rumusnya menjadi,
P = I2 . R → sehingga dan
Catatan : Rumus-rumus diatas sangat penting untuk digunakan dalam segala macam perhitungan pada bidang listrik, karena rumus-rumus tersebut adalah dasar sebelum menghitung ke tingkat selanjutnya.
9. PENGUKUR DAYA / WATT METER
Watt meter digunakan untuk mengukur pemakaian daya dari suatu hambatan / beban.
Perlu diingat bahwa : → 1 Watt = 1 Ampere x 1 Volt
Gambar cara menyambung Vm dan Am.
Bila arus dalam suatu rangkaian diukur dengan Ammeter dan tegangan dengan Voltmeter, maka pemakaian daya dapat dihitung dengan rumus sebagai berikut:
P = I x E
Harus selalu diingat bahwa, Ammeter dipasang SERI dengan rangkaian, sedangkan Voltmeter dipasang PARALEL / melintang terhadap hambatan.
Sesungguhnya Wattmeter itu adalah suatu perpaduan antara Voltmeter dengan Ammeter.
10. KERJA ATAU TENAGA ( JOULE = WS )
Kerja atau tenaga ialah perkalian antara daya dan waktu ( bandingkan dengan perihal DAYA LISTRIK ).
Contoh 1: Suatu bola lampu sebesar 100 Watt menyala selama 5 menit ( 300 detik ), maka tenaga yang digunakan , yaitu :
W = P x t
= 100 W x 300 detik = 30.000 Ws
DAYA ( dengan simbol P ) mempunyai satuan Watt ( dengan simbol W ).
Kerja atau tenaga dengan simbol W mempunyai satuan Joule yang simbolnya J, ( jangan sampai terbalik atau tertukar dengan Watt ).
Dimana,
1 J = 1 W x 1 s
( 1 Joule = 1 Watt kali 1 second )
Contoh 2: E=110V , I=0,5 A , t=60 s, W=….?
Jawab: P (daya) = E.I = 110 x 0,5 = 55 Watt
W (kerja) = P.t = 55 Watt x 60 second = 3300 J (Joule)
Contoh 3: E = 240 V ; R = 96 Ω ; t = 5 h ; W = …..?
Jawab:
P = I x E = 2,5 x 240 = 600 Watt.
W = P x t → t = 5 h = 18.000 detik
W = 600 W x 18.000 sekon = 108.105 Ws = 108.105 J
Jika ingin menyatakan kerja itu dalam satuan kWh ( dimana 1000
Wh = 1000 x 3600 Ws atau 1000×3600 J )
Maka menghitungnya menjadi;
W = P x t = 600 W x 5 h = 3000 Wh atau = 3 kWh.
( Catatan: k melambangkan kilo atau seribu ).
11. USAHA LISTRIK / HASIL KERJA LISTRIK ( WH )
Yaitu hasil kerja / tenaga dikalikan dengan waktu
→ A = Usaha listrik ( Jika Wh , t-nya adalah jam
Jika Ws . t-nya adalah sekon)
W = Daya listrik (Watt)
t = Waktu : → jika jam → A=Wh
jika detik → A= J atau Ws
Dari rumus , W=E.I , → maka A = E.I.t
Dari rumus , W=I2.R , → maka A = I2.R.t
Dari rumus , , → maka
Dari rumus, → Q = I.t maka A = E.Q → rumus ini dengan satuan J.
Dan A = E.I.t
Contoh 1 :
Sebuah motor listrik bekerja dengan daya 10 kW dalam waktu ½ jam.
Hitung usaha listrik yang dipakai oleh motor listriki itu (A) ?
Jawab : A=W.t = 10.000 W . ½ h = 5000 Wh = 5 kWh.
Contoh 2:
Sebuah lampu pijar dipasang pada tegangan 120 V dan memakai arus 0,5 A. Berapakah usaha listrik yang dipakai oleh lampu itu, jika menyala dari jam 15.30 sore s.d. 06.30 pagi ?
Jawab: A=E.I.t = 120 V x 0,5 A x 13 jam = 780 Wh = 0,78 kWh.
Contoh 3:
Sebuah dynamo memberikan arus pada jala-jala sebesar 10 A dengan tegangan 220 V.
Hitung: a) Daya yang dikeluarkan dynamo(W) ?
b) Usaha yang dikeluarkan dynamo selama 5 jam (A)?
c) Tahanan jala-jala (R)?
Jawab: a) W = E . I = 220 V. 10 A = 2200 Watt = 2,2 kW
b) A = W . t = 2,2 kW . 5 h = 11 kWh
c)
Contoh 4:
Suatu solder listrik mempunyai tahanan (R)= 60 Ohm dan tegangan 110 V.
Hitung dayanya (W)?
Jawab:
Contoh 5:
Unsur pemanas dari suatu ketel listrik dengan tegangan 220V. Harus diperbarui.
Hitung panjang kawat (l) yang diperlukan, jika daya ketel itu(W) 600 Watt dan yang dipakai kawat nickel chroom yang mempunyai garis tengah d=0,5 mm jika kawat nickel chroom ρ=1
Jawab:
A = 0,785.d2 = 0,785 . 0,52 = 0,19625 mm2
Contoh 6:
Sebuah gedung terdapat 10 buah lampu yang terdiri dari 4 lampu @ 60 W , 4 lampu @ 40 W dan 2 lampu @ 25 W. Jika tiap malam rata-rata menyala dari jam 17.30 s.d 06.30. Tegangan pada 120 V dan tarip per kWh = Rp. 500,-
Ditanya: a) Kuat arus I ?
b) Biaya penerangan selama 1 minggu?
Jawab:
Jumlah 10 lampu = ( 4×60)+(4×40)+(2×25) = 450 Watt
a)
b) Daya dalam 1 minggu = 7 x 450 = 3150 Watt = 3,15 Kwh
Biaya penerangan dalam 1 minggu = 3,15 x Rp.500 = Rp. 1.575,-
12. RENDEMENT / DERAJAT GUNA / EFFISIENSI ( η )
Perubahan daya/usaha listrik menjadi daya/usaha mekanik atau daya/usaha panas atau sebaliknya, selalu timbul kerugian-kerugian, sehingga baik pada motor-motor listrik, generator-generator atau ketel-ketel, daya/usaha yang dimasukkan selalu lebih besar dari daya/usaha yang dikeluarkan. Dalam hal ini bisa dikatakan bahwa rendement adalah daya/usaha yang dimanfaat atau daya yang dihasilkan tidak akan mencapai daya/usaha penuh 100%.
Kerugian-kerugian daya/usaha listrik ini antara lain disebabkan oleh sebagian daya/usaha listrik yang dimasukkan ke dalam motor listrik, misalnya melalui kumparan yang merupakan tahanan, sehingga daya/usaha ini harus mengatasi tahanan tersebut. Dan sebagian daya/usaha yang dirugikan ini berubah menjadi panas. Dan sebaliknya daya/usaha mekanik yang masuk ke genarator sebagian dari daya/usaha mekanik ini harus mengatasi tahanan-tahanan dari gesekkan antara poros dan bantalan, dimana daya/usaha ini juga berubah menjadi panas.
Perbandingan antara daya/usaha yang berguna dan daya/usaha yang masuk disebut Rendement (Derajat guna/Daya guna).
Contoh 1:
Suatu motor listrik untuk tegangan Ek=220V , dan menahan arus I=20A. Hitunglah daya yang berguna dalam satuan KW dan tk, jika η motor =0,9.
Jawab: Wt = Ek.I = 220 x 20 = 4400 Watt
Wn = η . Wt = 0,9 x 4400 = 3960 Watt = 3,96 kW
1KW = 1,36 tk → Pn = Wn x 1 KW = 3,96 x 1,35 tk = 5,3856 tk.
Contoh 2:
Sebuah generator dengan η=0,9 dijalankan oleh suatu mesin dengan daya 30 tk (Pt) dan tegangan klem (Ek)=220V. Hitung arus yang dikeluarkan generator?
Jawab: Pn = η x Pt = 0,9 x 30 = 27 tk
Wn = 1 tk x Pn = 736 Watt x 27 tk = 19872 Watt
Contoh 3:
Sebuah ketel listrik bekerja dengan daya (Wt)=850 Watt untuk mendidihkan air G=2 liter dan suhu (t1)= 10oC, η ketel=0,8 dg t2=100oC.
Hitung ongkos pemanasan jika tiap KWh=Rp.500,- dan waktu (t) yang dibutuhkan sampai air mendidih?
Jawab: Qn = G (t2-t1).kCal.
= 2 ( 100 o – 10o ) kCal = 180 kCal.
Contoh 4 :
Sebuah generator dihubungkan satu poros dengan motor diesel. Generator bekerja dengan tegangan klem 125 V dan mengeluarkan arus 4A. Rendement generator 0,8 dan rendement diesel 0,6.
Hitung banyaknya minyak yang digunakan kalau mesin itu bekerja selama 10 jam. Nilai bakar dari minyak 104 (tiap 1 kg menghasilkan 104 kCal.
Jawab:
Wn gen = Ek x I = 125 x 4 = 500 Watt
Pt gen = Wt gen x 0,00136 tk = 625 W x 0,00136 tk = 0,85 tk
Pn dis = Pt gen = 0,85 tk
At dis = Pt dis x t = 1,42 x 10 = 14,2 tk
Qt dis = 635 x 14,2 = 9017 kCal
13. HUBUNGAN ANTARA DAYA/USAHA LISTRIK DENGAN DAYA/USAHA PANAS.
Ahli ilmu alam Joule setelah melakukan percobaan menemukan, bahwa nilai dari ”Joule = 0,00024 kCalori”.
Nilai tersebut adalah menunjukkan beberapa persamaan dari nilai daya / usaha listrik dengan nilaia daya / usaha panas.
Dari 1J=0,00024 kCalori , dan rumus A=E.I.t , maka didapatkan rumus :
Q = 0,00024 . A atau
Rumus-rumus yang lain juga dapat dipergunakan, yaitu :
Q = 0,00024 . W . t atau A = W . t
Q = 0,00024 . I2 . R . t atau A = I2 . R . t
atau
dimana, Q = jumlah panas ( kCalori )
t = waktu ( detik ).
Contoh 1 :
Berapakah panas yang ditimbulkan oleh suatu tungku sinar listrik dalam waktu 2 jam, jika tegangan 220 V dan arus sebesar 5 A.
Jawab:
Q = 0,00024 . E . I . t
= 0,00024 . 220 . 5 . 7200
= 1900000 Calori = 1900 kCalori.
14. HUBUNGAN ANTARA DAYA/USAHA LISTRIK DENGAN DAYA/USAHA MEKANIK.
Bunyi hukum SARA daya usaha : ” Daya usaha atau tenaga tidak dapat ditiadakan dan tidaklah terjadi dari ketidak-adaan”.
Dari hukum diatas mempunyai arti bahwa, jumlah energi atau tenaga dalam alam kita ini adalah tetap. Jadi jika ada sejumlah tenaga hilang dari bentuk yang satu, maka selalu timbul sejumlah tenaga dalambentuk yang lain yang sama banyaknya. Setelah melalui percobaan dan penyelidikan, maka dapat diketahui persamaan-persamaan harga daya/usaha listrik dengan daya/usaha mekanik.
DAYA
LISTRIK MEKANIK PANAS
KW W tk Kgm/detik kCal/detik Calori/detik
1 1000 1,36 102 0,24 240
0,001 1 0,00136 0,102 0,0024 0,24
0,736 736 75 76 0,1755 175,5
1/102 9,81 1 1 0,00233 2,33
4,180 4180 427 427 1 1000
0,00418 4,18 0,427 0,427 0,001 1
USAHA
LISTRIK MEKANIK PANAS
KWh Wh Joule TKh Kgm K.Calori Calori
1 1000 36.10
1,36 367200 864 864.10
0,001 1 36.10
0,00136 367,2 0,864 864
1/36.10
1/36.10
1 1/9,81 0,102 0,00024 0,24
0,736 736 265.10
1 27.10
635 635.10
1/367200 1/367,2 9,81 1/270000 1 0,00233 2,33
1/864 1/0,864 4180 1/635 427 1 1000
1/864.10
1/864 4,28 1/635.10
0,427 0,001 1
15. RUMUS DAYA
1 FASA 3 FASA SATUAN
BEBAN SEIMBANG BEBAN TAK SEIMBANG
P = U.I.Cosφ
DAYA NYATA (REAL/AKTIF) P 3 Φ = 3.Uf.If.Cosφ
Atau
P3 Φ = √3.U .I .Cosφ
P3 Φ = Pf + Pf + Pf , atau
P3 Φ = Uf . If . Cosφf +
Uf . If . Cosφf +
Uf . If . Cosφf
Dihitung per fasa
WATT
Q = U.I.Sinφ
DAYA BUTA ( REAKTIF )
Q 3 Φ = 3.Uf.If.Sinφ
Atau
Q3 Φ = √3.U .I .Sinφ
Q 3 Φ = Pf + Pf + Pf , atau
Q 3 Φ = Uf . If . Sinφf +
Uf . If . Sinφf +
Uf . If . Sinφf
Dihitung per fasa
VAR
S = U.I.
DAYA SEMU
S 3 Φ = 3.Uf.If
Atau
S3 Φ = √3.U .I
VA
HUKUM OHM TETAP BERLAKU
16. DERAJAT LISTRIK
Pada mesin empat kutub , bahwa setiap kali putaran mesin, tegangan induksi yang ditimbulkan sudah menyelesaikan dua siklus penuh, atau dengan kata lain satu siklus adalah 360o, sehingga mesin itu mekaniknya berputar 2x360o=720o. Perputaran listrik itu secara umum dapat dituliskan ;
→ dimana : Ө e = sudut listrik
Ө m = sudut mekanik
P = jumlah kutub ( jika p artinya
pasang kutub )
TERBANGKITNYA ARUS BOLAK-BALIK / ARUS TUKAR
17. GENERATOR ABB
Bedanya dengan arus searah yang mana besar dan arahnya tetap atau searah saja, sedangkan Arus Bolak-Balik (ABB) dimana setiap saat besarnya tidak tetap, dan pada saat tertentu pula arahnya akan berubah. ABB dibangkitkan oleh sumber generator.
Dalam generator ABB, biasanya mempunyai kumparan yang tetap dan yang berputar adalah kutub-kutubnya (generator dengan kutub dalam).
Keuntungan konstruksi macam ini ialah, bahwa untuk pengambilan arus yang dibangkitkan dalam kumparan tidak diperlukan cincin seret/slipring dan burstel-burstel sebagai hantaran luar dapat dihubungkan padanya melalui klem-klem. Hal ini sangat penting artinya bagi generator-generator tegangan tinggi atau arus kuat.
Bagian-bagian generator;
1. Rumah generator (body)
2. Lilitanstator dan inti stator
3. Lilitan jangkar rotor , inti rotor dan kutub
4. Cincin seret / slipring
5. Poros
6. Sikat arang
7. Terminal
8. Bantalan
9. Pendingin / kipas
10. Tutup
11. dll
kutub-kutub dari jangkar kutub diperkuat dengan dinamo arus searah yang dipasang satu poros dengan generator ABB.
Jika jantera kutub berputar satu putaran, maka akan terjadi suatu perubahan aliran daya magnetis yang serupa dengan apabila suatu lilitan diputar sekali sekeliling kutub-kutub.
Gambar : A
Perhatikan gambar diatas ;
Sikap a :
Arus daya magnetis tegak lurus terhadap bidang lilitan, sehingga jumlah garis-garis gaya yang terkurung dalam belitan adalah paling besar (maksimal) dan ggl yang dibangkitkan adalah Nol.
Sikap b :
Arus daya magnetis sejajar dengan bidang lilitan sehingga jumlah garis-garis gaya yang terkurung di dalamnya Nol dan ggl yang dibangkitkan dalam lilitan adalah maksimum.
Arah ggl dapat ditentukan dengan kaidah tangan kanan. Perlu di ingat bahwa dalam hal ini yang berputar/bergerak adalah kutub-kutubnya.
Kita umpamakan kutub-kutubnya yang diam dan lilitannya yang berputar dengan arah berlawanan dengan berputarnya kutub-kutub.
Pada sikap ini ggl yang dibangkitkan pada sisi lilitan yang berhadapan dengan kutub Utara meninggalkan kita, dan yang berhadapan dengan kutub Selatan menuju pada kita.
Sikap c :
Jumlah garis-garis gaya yang terkurung dalam lilitan maksimal dan ggl yang dibangkitkan dalam lilitan Nol.
Sikap d :
Jumlah garis-garis gaya yang terkurung dalam lilitan Nol dan ggl yang dibangkitkan maksimal, tetapi arahnya berbalikan dengan sikap b, sebab sisi lilitan bagian atas pada sikap d berhadapan dengan kutub Utara.
Sikap e :
Jumlah garis-garis gaya yang terkurung dalam lilitan kembali maksimal sehingga ggl yang dibangkitkan dalam lilitan adalah Nol.
Perubahan besarnya ggl dan juga besarnya aliran selama jangka kutub berputar satu kali putaran, digambarkan dengan suatu garis-garis lengkung seperti gambar diatas. Garis ini , yang berbentuk garis lengkung sinus dapat dilukiskan seperti gambar dibawah.
Gambar : B
Mula-mula kita gambarkan sebuah lingkaran dengan jari-jari yang panjangnya diumpamakan sebagai ggl maksimum. Jari-jari atau ”Vektor” ini dimisalkan berputar satu kali dan arah yang bertentangan dengan arah perputaran jarum jam dan pada sekeliling lingkaran itu terletak sisi lilitan.
Jika vektor berada pada jam 0, maka lilitan berada pada sikap a dan ggl yang terbangkit adalah Nol.
Setelah ¼ perputaran, vektor berada pada jam 3 dan ggl telah mencapai harga maksimumnya . dan setelah ¼ perputaran lagi, vektor berada pada sikap pada jam b, maka ggl yang terbangkit telah turun hingga mencapai harga Nol lagi. Garis-garis tegak lurus dan memperhubungkan titik ujung vektor dengan garis menyatakan arah dan besarnya ggl yang terbangkit.
Dengan cara serupa itu dapat diketahui besar dan arahnya dari sikap-sikap vektor setiap saat.
Jika waktu selama terjadinya suatu perubahan tekanan yang sempurna kita bagi 12 bagian yang sama, maka kejadian-kejadian itu semua dapat dilukiskan seperti terlihat pada gambar B.
SIFAT-SIFAT ARUS BOLAK-BALIK ( ABB )
1. ABB tidak dapat dipakai untuk pekerjaan kimia
2. ABB tidak dapat dipakai untuk pekerjaan suhu
3. ABB dapat dipakai untuk pekerjaan kemagnitan.
KEUNTUNGAN ABB
Tegangan dari generator dapat dibuat tinggi sampai 10 s.d 15 KV. Untuk pengiriman tenaga listrik, tegangan generator tersebut dapat dinaikkan lagi dengan pertolongan transformator sampai 150 kV bahkan sampai pula 500 kV. Setelah sampai tujuan yang diinginkan, tegangan yang tinggi itu diturunkan lagi dengan pertolongan transformator juga sesuai tegangan yang dikendaki.
Dengan demikian kerugian tegangan yang besar pada hantaran pengirim dapat dihindari.
Dari pertolongan transformator tersebut, dimana tegangan bisa diatur naik atau turun, maka dalam hal ini transformator yang digunakan adalah transformator step-up atau step-down.
18. NILAI EFEKTIF DARI KUAT ALIRAN DAN TEKANAN
Apabila melalui suatu pesawat pemanas gbr.a) mengalir suatu aliran tukar yang mempunyai nilai maksimum 30 A, maka nilai aliran tukar akan berubah diantara 0-30 A. Dan gambar b) , memperlihatkan jalannya aliran tukar ini selama ½ kala. Alat pengukur Ammeter ternyata hanya menunjuk suatu harga aliran sebesar 21 A, dan ini dinamakan ”Kuat Aliran Efektif” atau ”Nilai Guna” dari aliran tukar.
Sehingga nilai efektif dari aliran tukar itu adalah kira-kira 0,7 atau 1/√2 kali besarnya kuat aliran maksimum, atau dapat dituliskan rumus :
Dan dari itu
Hal serupa juga berlaku pada tekanan aliran, dan ternyatalah bahwa ;
Nilai tekanan efektif sudah diketahui secara umum, tetapi harus diperhatikan juga besarnya nilai tekanan maximum, lebih-lebih pada tekanan-tekanan yang tinggi karena akan berhubungan dengan penentuan besarnya penahan/tahanan-tahanan isolasi suatu penghantar.
Jika tidak ada petunjuk-petunjuk lain, maka besarnya harga-harga untuk tekanan dan aliran tukar selalu kita tafsirkan sebagai nilai efektif.
Dari percobaan-percobaan diatas ternyata bahwa selama jangka waktu perjalanan yang sama, besarnya kuat arus efektif dari aliran tukar sebesar 21 A itu menimbulkan suatu kalor (panas) yang sama banyaknya dengan kuat aliran rata dari 21 Ampere juga.
Untuk menentukan banyaknya panas yang terjadi dari aliran tukar , berlaku pula Hukum Joule, yaitu dengan rumus :
19. LINGKARAN ALIRAN TUKAR DENGAN MUATAN BEBAS INDUKSI
Apabila aliran listrik dalam aliran rata diputuskan dengan tiba-tiba, maka perubahan aliran yang mengalir akan besar dan terbangkitlah suatu ggl induksi sendiri, yang kadang-kadang sangat besar, sehingga percikan-percikan bunga api listrik.
Di dalam suatu lingkaran aliran tukar akan selalu terbangkit ggl induksi sendiri secara terus menerus, disebabkan oleh karena aliran tukar itu selalu berubah kuatnya.
Jika pada lingkaran aliran tukar yang semata-mata hanya terdapat lampu-lampu pijar, pesawat-pesawat pemanas , dsbnya, yang hanya mempunyai penahan-penahan ohm saja, maka pada waktu aliran tukar dialirkan dengan semisal frekuensi 50 Hz, maka tidak akan terbangkit suatu ggl / DEM yang nyata.
Pesawat-pesawat yang dihubungkan pada suatu tekanan bolak-balik dan di dalamnya tidak terdapat adanya gejala-gejala induksi sendiri yang nyata, maka pesawat-pesawat itu dinamakan ”Pesawat Yang Bebas Induksi”.
Besarnya kuat arus dalam setiap saat dapat dihitung dengan jalan membagi besar tekanan pada setiap saat dengan tahanan. Dan ini ternyata bahwa kuat aliranpun berubah menurut garis lengkung, yang sesuai dengan garis lengkung tekanan.
Jadi,kuat aliran itu, juga selalu berubah menurut garis sinus, yaitu dari harga Nol sampai :
dan, dengan melihat Hukum Ohm, maka :
20. INDUKSI SENDIRI DAN PERKISARAN FASA
Jika dalam suatu lingkaran kumparan dialirkan aliran tukar gambar 20.a, maka aliran yang terdapat pada lilitan-lilitan akan selalu berubah arahnya, sehingga aliran daya magnetis yang terbangkit di dalam kumparan itu juga akan selalu berubah kuat dan arahnya.
Aliran daya magnetis yang berubah-ubah ini akan mengakibat ggl/DEM induksi sendiri di dalam kumparan yang mana juga dapat bertambah atau berkurangnya kuat aliran.
Didalam suatu lingkaran aliran tukar gejala induksi itu selalu timbul, oleh karenanya kuat aliran akan mencapai nilai-nilai maksimalnya dan selain dari itu akan mengikuti (mengiring) jalannya tekanan seperti terlukis pada gambar 20.b. dimana garis lengkung aliran bergeser kekanan terhadap lengkung tekanan.
Hal serupa itu dikatakan bahwa , ”Aliran berkisar dalam fasa terhadap tekanan”.
Pesawat-pesawat yang dimana timbul gejala-gejala induksi sendiri dinamakan : ” Pesawat Induktif”.
Pada suatu muatan induktif, aliran dan tekanan selalu berkisar dalam fasa, yang mana aliran mengiring/mengikutu tekanan. Perkisaran fasa itu akan menjadi besar, apabila induksi sendiri bertambah besar. Besarnya perkisaran itu umumnya dinyatakan dengan huruf yunani φ ( phi ) dan diukur dengan derajat listrik.
Dalam gambar 20.b. garis lengkung tekanan dan garis lengkung aliran dilukiskan sedemikian rupa, sehingga perkisaran fasa φ adalah 1/12 x 360o = 30 o listrik.
Jika kumparan dari contoh diatas itu dilengkapi dengan suatu teras baja lunak yang tertutup ( gambar 20.c.), maka induksi sendiri akan menjadi sangat besar. Perkisaran fasa yang terjadi dapat kita anggap sedemikian besarnya, sehingga tekanannya menjadi nilai maksimal pada saat harga aliran sama dengan Nol dan mulai mengalir kearah yang bersamaan dengan arah tekanan itu (gambar 20.d).
Setelah ¼ kala, tekanan itu mencapai harga Nol dan aliran mencapai harga maksimalnya. Dalam hal serupa ini dikatakan bahwa perkisaran fasa φ = 90o.
Didalam prakteknya hanyalah mungkin tercapai suatu perkisaran fasa yang sangat mendekati nilai itu, untuk mencapai 90o tepat sangatlah tidak mungkin.
Dalam hal yang demikian ini besarnya tahanan ohm haruslah sedemikian kecilnya, sehingga bolehlah diabaikan saja. Hal serupa ini dinamakan suatu muatan induktif yang sempurna , jadi ;
”Pada suatu muatan induktif yang sempurna, aliran mengiring/mengikuti pada 90o”.
21. HARGA RATA-RATA
Harga rata-rata untuk tegangan ac ditulis Erata-rata dan untuk arusnya Irata-rata .
Harga rata-rata untuk garis lengkung berbentuk sinus dicari selama ½ periode. Sebab kalau dicari dalam 1 periode harga rata-ratanya = 0 (luas bidang bagian positip atau yang diarsir tegak sama dengan luas bidang bagian negatip yang diarsir mendatar.
Yang diartikan harga rata-rata seperti gambar diatas ialah tinggi bidang berbentuk segi empat, yang luasnya sama dengan luas bidang yang dibatasi garis lengkung bentuk sinus selama ½ periode, dan menurut perhitungan Ilmu Pasti bahwa harga harga itu dapat dihitung dengan rumus:
a. Untuk tegangan : → E rata-rata =
b. Untuk arus : → I rata-rata =
Contoh 1 :
Tegangan bolak-balik bentuk sinus mempunyai harga maksimum 140 Volt. Berapa harga rata-rata dan harga efektifnya?
Jawab: a. E rata-rata =
b. E efektif =
22. HARGA DARI FAKTOR PUNCAK ( ft )
Faktor puncak ialah faktor bagi dengan maksimum harga efektif, sehingga rumusnya;
23. HARGA DARI FAKTOR BENTUK ( fb )
Faktor bentuk ialah hasil bagi dari harga efektif dengan harga rata-rata, sehingga rumusnya :
Contoh 1: Pada saat 1/6 periode harga tegangan = 80 V. Berapa harga rata-rata dan harga efektifnya?
Jawab : e = 80 V selama 1/6T
e = Em.Sin →
Catatan :
1. Faktor bentuk sangat penting untuk menentukan konstuksi kutub magnit supaya dapat membangkitkan ggl bentuk sinus.
2. Untuk penulisan harga efektif pada index ef tidak perlu ditulis, karena harga listrik yang dipakai konsumen adalah menunjukkan harga efektifnya. Cukup ditulis untuk tegangan E dan untuk arus I saja.
3. Kalau besaran bentuk sinus diukur dengan pesawat ukur dan harga yang ditunjukkan oleh pesawat ukur itu ialah menunjukkan harga efektifnya. `
24. HARGA-HARGA PADA ARUS BOLAK-BALIK 1 FASA
A. Harga sesaat : yaitu harga pada saat tertentu pada gelombang sinusoida
( saat t1 → e1 , t2 → e2 , t3 → e3 , ….dstnya)
Karena a = ω.t , → maka harga sesaat arus, adalah i = Imax.Sin ω.t
B. Harga Maksimum : yaitu harga paling tinggi pada gelombang sinusoida.
C. Harga Efektif : yaitu harga yang ditunjukkan oleh alat ukur bolak- balik,
D. Harga Rata-rata : yaitu harga rata-rata Arus Bolak-Balik pada setengah
sinusoida ,
E.Harga faktor bentuk =
Jadi, faktor bentuk = 1,1
dan, untuk faktor konstantanya = 4,4.
25. KALA DAN FREKUENSI
Jika jangkar kutub berputar satu kali putaran, gaya gerak listrik (ggl) dan arus yang dinduksikan di dalam kumparan stator berubah dari Nol menjadi maksimum positip menjadi Nol maksimum negatip dan kembali ke Nol ( untuk 2 kutub). Waktu terjadinya perubahan penuh dari ggl dan arus ini disebut ”KALA”. Satu kala bila dibagi menjadi 360 bagian yang sama, masing-masing bagian disebut ”SATU DERAJAT LISTRIK” ( 1o LISTRIK).
Jadi, 1 KALA = 360 DERAJAT LISTRIK
( 1 KALA = PERIODE CYCLE ).
Jika pada 1 detik jangkar kutub berputar 1x putaran, maka waktu terjadinya 1 Kala adalah 1 detik.
Jika jangkar kutub itu berputar 2x putaran, maka waktu terjadinya 1 Kala adalah ½ detik dan dalam 1 detik terjadi 2 Kala.
Dan apabila jangkar kutub berputar 25x lebih cepat, maka waktu terjadinya 1 Kala adalah 1/25 detik, atau dalam 1 detik terjadi 25 Kala.
Banyaknya Kala yang terjadi dalam 1 detik disebut ”FREKUENSI” aliran tukar.
Dan sudut yang dijalani oleh putaran jangkar kutub pada setiap detik dinamakan ”KECEPATAN SUDUT”, yang dinyatakan dengan ω (OMEGA).
Kecepatan sudut ini (ω) biasanya tidak dinyatakan dalam derajat listrik tetapi dalam ”RADIAL-RADIAL”.
RADIAL adalah suatu sudut yang besarnya bersamaan dengan jari-jari r, oleh karena keliling lingkaran adalah sama dengan 2. .r. Jadi suatu sudut dari 360o listrik ( 1Kala ) adalah = 2. radial listrik.
Untuk suatu frekuensi (f), besarnya kecepatan sudut listrik atau apa yang dinamakan ”FREKUENSI LINGKARAN” , menjadi :
ω = 2. . f → RUMUS.
Atau nilai ω = 2. . f = 2 x 3,14 x 50 = 314.
Karena frekuensi yang digunakan di Indonesia adalah 50 Hz.
26. PENGERTIAN FREKUENSI
f = f Hz , artinya dalam 1 detik menghasilkan f gelombang, atau 1 gelombang membtutuhkan 1/f detik.
f = 50 Hz , artinya dalam 1 detik menghasilkan 50 gelombang, atau 1 gelombang membutuhkan waktu 1/50 detik.
Padahal 1 gelombang waktunya = T detik. Jadi ;
Dari rumus diatas, dan rumus → karena ,
Sehingga rumusnya menjadi ; → Jadi nilai ω = 2 x 3,14 x 50
= 314
Jika frekuensi yang berlaku adalah 50 Hz, yang mana besaran frekuensi 50 Hz adalah frekuensi di Indonesia.
Definisi Frekuensi
Ialah jumlah perubahan arah arus perdetik, atau jumlah sinusoida perdetik.
f = 50 Hz , artinya 1 detik terjadi 50 x perubahan arus , atau
1 detik sebanyak 50 gelombang sinusoida.
Dari persamaan derajat listrik diketahui bahwa untuk setiap satu siklus tegangan yang dihasilkan mesin menyelesaikan kali putaran. Karena itu frekuensi gelombang tegangan adalah
dimana, Ө e = sudut listrik
Ө m = sudut mekanik
P = jumlah kutub ( jika p artinya pasang kutub )
n = rotasi permenit ( rpm )
= rotasi perdetik ( rps )
Kecepatan sinkron untuk mesin arus bolak-balik lazimnya dinyatakan dengan ;
Jadi, misalnya untuk generator sinkron yang bekerja dengan frekuensi 50 c/s dan mempunyai jumlah kutub ( p=2 ), kecepatan berputar mesin tersebut adalah ;
Catatan : 50 c/s ( cycle/second = 50 Hz = 50 putaran/detik).
Jadi, 1 putaran = 1 pasang kutub = 1 periode = 1 detik = 1 frekuensi
Rumus :
1 periode dalam waktu 1 detik , maka frekuensinya = 1 Hz
1 periode dalam waktu ½ detik , maka frekuensinya = 2 Hz
1 periode dalam waktu 2 detik , maka frekuensinya = ½ Hz
1 periode dalam waktu 1 menit , maka frekuensinya = 1/60 Hz
1 periode dalam waktu 50 detik , maka frekuensinya = 1/50 Hz
Sehingga ;
→ → → dimana karena
Putaran dalam 1 menit = 60 detik.
atau, → ingat p huruf kecil, artinya untuk pasang kutub.
→ ingat P huruf besar, artinya untuk jumlah kutub.
(dimana perbedaannya pada Pasang dan Jumlah).
Jadi, → untuk pasang kutub karena ;
→ untuk jumlah kutub P=1/2 p , dan
→ untuk pasang kutub p = 2 P
→ untuk jumlah kutub
Dari rumus XL pada arus tukar, yaitu , dimana L=1 Henry , maka
→ maka
Sehingga, bila → f = 50 Hz , maka XL = 314 Ω
f = 25 Hz , maka XL = 150 Ω
f = 10 Hz , maka XL = 62,8 Ω
f = 5 Hz , maka XL = 30 Ω
f = 0 Hz , maka XL = 0 Ω
Kesimpulan ; f makin tinggi , maka XL makin besar
Dari rumus XC pada arus tukar, yaitu , jika C = 10 µF , maka
Sehingga, bila → f = 50 Hz , maka XC = 318 Ω
f = 25 Hz , maka XC = 636,6 Ω
f = 10 Hz , maka XC = 1591 Ω
f = 5 Hz , maka XC = 3183 Ω
f = 0 Hz , maka XC = 1 M Ω
Kesimpulan ; f makin tinggi , maka XC makin kecil
f makin kecil , maka XC makin besar
MACAM-MACAM ALAT UKUR LISTRIK DAN FUNGSINYA

Alat ukur listrik merupakan alat yang digunakan untuk mengukur besaran-besaran listrik seperti hambatan listrik (R), kuat arus listrik (I), beda potensial listrik (V), daya listrik (P), dan lainnya. Terdapat dua jenis alat ukur yaitu alat ukur analog dan alat ukur digital.

Berikut adalah macam-macam alat ukur :
  • Amper-meter
  • Voltmeter
  • Ohm-meter
  • Multimeter Analog/Digital
  • Megger
  • Osiloskop
  • dll
   Ampermeter
Amperemeter adalah alat yang digunakan untuk mengukur kuat arus listrik baik untuk  DC maupun AC yang ada dalam rangkaian tertutup. Amperemeter biasanya dipasang berderet dengan elemen listrik. Jika kita akan mengukur arus yang melewati penghantar dengan menggunakan Amperemeter maka harus kita pasang seri dengan cara memotong penghantar agar arus mengalir melewati ampere meter.
DC Ampermeter

AC Ampermetr







 




Bagian terpenting dari Ampermeter adalah galvanometer. Galvanometer bekerja dengan prinsip gaya antara medan magnet dan kumparan berarus. Galvanometer dapat digunakan langsung untuk mengukur kuat arus searah yang kecil. Semakin besar arus yang melewati kumparan semakin besar simpangan pada galvanometer.
Galvanometer











Ampermeter terdiri dari galvanometer yang dihubungkan paralel dengan resistor yang mempunyai hambatan rendah. Tujuannya adalah untuk menaikan batas ukur ampermeter. Hasil pengukuran akan dapat terbaca pada skala yang ada pada ampermeter.
Alat ini sering digunakan oleh teknisi elektronik yang biasanya menjadi satu dalam multitester atau Avometer. Avometer adalah singkatan dari Amperemeter, Voltmeter dan Ohmmeter.

Voltmeter  
Voltmeter adalah alat untuk mengukur besar tegangan listrik dalam suatu rangkaian listrik. Voltmeter disusun secara paralel terhadap letak komponen yang diukur dalam rangkaian. Alat ini terdiri dari tiga buah lempengan tembaga yang terpasang pada sebuah bakelite yang dirangkai dalam sebuah tabung kaca atau plastik. Lempengan luar berperan sebagai anode sedangkan yang di tengah sebagai katode. Umumnya tabung tersebut berukuran 15 x 10cm (tinggi x diameter).


Voltmeter

Ohm-meter  
Ohm-meter adalah alat untuk mengukur hambatan listrik, yaitu daya untuk menahan mengalirnya arus listrik dalam suatu konduktor. Besarnya satuan hambatan yang diukur oleh alat ini dinyatakan dalam ohm. Alat ohm-meter ini menggunakan galvanometer untuk mengukur besarnya arus listrik yang lewat pada suatu hambatan listrik (R), yang kemudian dikalibrasikan ke satuan ohm.
Ohm-meter

      Multitester Analog/Digital 
Multimeter adalah alat untuk mngukur listrik tegangan (voltmeter), hambatan (ohm-meter), maupun arus (amper).
Ada dua kategori multimeter: multimeter digital atau DMM (digital multi-meter)(untuk yang baru dan lebih akurat hasil pengukurannya), dan multimeter analog. Masing-masing kategori dapat mengukur listrik AC, maupun DC.
  
Multitester Digital
Multitester Analog



      









          
            Megger 
Megger
Megger dipergunakan untuk mengukur tahanan isolasi dari alat-alat listrik maupun instalasi-instalasi, output dari alat ukur ini umumnya adalah tegangan tinggi arus searah.Megger ini banyak digunakan petugas dalam mengukur tahanan isolasi antara lain untuk:
a.    Kabel instalasi pada rumah-rumah/bangunan
b.    Kabel tegangan tinggi.
c.    Kabel tegangan rendah
d.   Transformator
e.    Dan peralatan listrik lainnya


Osiloskop 
Oscilloscope adalah alat ukur yang dapat menunjukkan kepada anda 'bentuk' dari sinyal listrik dengan menunjukkan grafik dari tegangan terhadap waktu pada layarnya. Ini sama dengan pengambaran pada layar televisi.

Oscilloscope terdiri dari tabung vacuum dengan sebuah cathode (electrode negative ) pada satu sisi yang menghasilkan pancaran electron dan sebuah anode ( electrode positive ) untuk mempercepat gerakannya sehingga jatuh tertuju pada layar tabung. Susunan ini disebut dengan electron gun.

Elektron-elektron disebut pancaran sinar katoda sebab mereka dibangkitkan oleh cathode dan ini menyebabkan oscilloscope disebut secara lengkap dengan cathode ray oscilloscope atau CRO.
Osiloskop